M514 SAITEC提案課題 金属3Dプリンタ

造形物への後加工(電解研磨)

造形物に対して後加工(電解研磨)を行い、加工面の 面粗さを比較する。

- 1.形状の3Dデータ作成(**図1**)
- 2.金属 3 Dプリンタによる造形(積層,脱脂,焼結) (表1)
- 3.平面研削盤(砥石#46)で研削加工
- 4. 雷解研磨 (図2)
- 5.非接触微細形状測定機※による測定

※日立ハイテクサイエンス社 VS1800

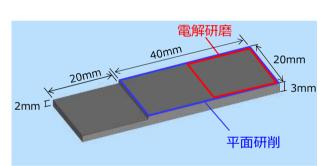


図1 3 Dデータ

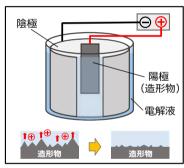
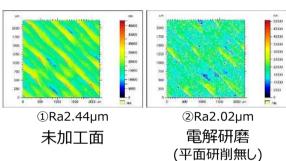


図2 電解研磨

表1 造形条件

使用機器	Markforged製 Metal X			材料容積	4.57cm ³
材料	17-4PHステンレスv2	積層ピッチ	0.127mm	造形時間	1時間57分
ラフト	無し	サポート	標準	脱脂時間	4時間
輪郭層数	上底面8層(1mm)	内部	三角格子	乾燥時間	4時間
	壁面4層(1mm)	(Infill)	(Triangular)	焼結時間	27時間
ソフトウエア	Offline Eiger V3.10.3			焼結後質量	21.06g


※時間等の数値データは専用ソフトウエアによるシミュレーション値

Rev.1.0: 2024.11.01

- ・加工結果を図3に示す。
- ・非接触微細形状測定機による測定結果を図4に示す。

平面研削無し

SAITEC

平面研削有り

図3 加工結果

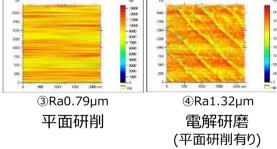


図4 測定結果

まとめ

- ・電解研磨を行うと表面の光沢が増した。
- ・平面研削面に対して電解研磨を行うと、造形時のノズルの経路跡が 再び現れ、面粗さが悪くなることが分かった。
- ・今後、電解研磨条件等の検討を行いたい。