(例2)外壁断熱

さ対策入力シート及び計算結果シート

セル内に必要事項を記入します。セル枠線外には記入できません。注意事項に留意して作成してください。 計算結果は「計算結果シート」に表れます。

I. 事業所概要

1 対策事業名 □□工場

上尾市 対象の用途〇〇製品の製造 設置工事場所 埼玉県

2 当該建物の年間消費電力

1年間の電気メーターの積算値(電力会社の伝票の1年分のkWhの値)

表-1 対象建築物の年間消費電力入力表(参考)

年間消費電力

8,000 kWh/年

3 既存空調設備の冷熱源のCOP(成績係数)

熱量効果計算における、既存冷熱源のCOP値は以下の一定値を使用する。

本ファイルの効果計算ではCOP値の変更はできない。

冷房用COP 3.55 暖房用COP 3.95

4 当該施設の操業・営業時間

月の平均営業・操業日数 25 日/月 一日の平均営業・操業時間 10 h/日 月 当 たりの 平 均 操 業・営 業 時 間 ---250 h/月

Ⅱ. 施工内容

1 対策部位 (対策する工事をウリックし選択する □ 屋根 □ 外壁断熱 □

外壁と窓は、建物の"方位"に注意してください。 施工する"方位面"の断熱施工面積を入力する。 (外壁の一部の場合は、その施工面積を入力する) ※この例は、南と西に対策を実施したものとします。

作成日

令和元年〇月〇日

2 暑さ対策を行う屋根・外壁・窓ガラスの面積

暑さ対策を実施する屋根、外壁、窓の施工面積を記入する。施工しない場合は「0」を入力する。

方位については、図1、図2を参考にすること。

表-2 各方位の対象面積

	対策部位	方位	施工面積(m	1 ²)
	屋根	=	0	
/	外壁	北 北東	0	1
		東	0	i
		南東	0	Ц
		南	100	Ľ
		南西	0	H
1		西	100	i
Ţ		北西	0	1
		- -	0	
		北東	0 0 0 0 0 0	
		東	0	
	窓ガラス	南東	0	
	芯ハノへ	南	0	
		南西	0	
		西	0	
		北西	0	

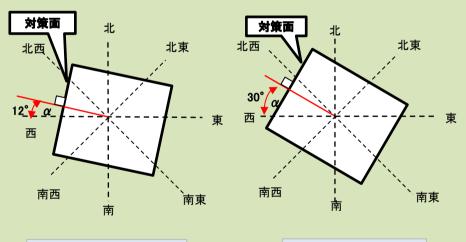


図1 方位の解釈の例1

図2 方位の解釈の例

対策する面の法線(面に対して90度の線)と方角の角度 α が22.5° より、小さい場合、この面の方角面(この場合は西向き)となる。 図2の場合は北西面となる。

Ⅲ. 対策後の熱性能(熱貫流率、日射熱吸収率、日射熱取得率)

1屋根対策

1)断熱

屋根について、対策を行わない場合は、数値を変更しない。

対策を行う方位のみ、その数値に変更する。

表一3 暑さ対策による屋根の熱貫流率入力表

屋根の熱貫流率

 $3.91 \text{ W/(m}^2\text{K})$

★デフォルト値:3.91W/(m²K)

②遮熱塗装

屋根について、対策を行わない場合は、数値を変更しない。

表-4 暑さ対策による屋根の日射熱吸収率入力表

遮熱塗装の日射熱吸収率 0.7

★デフォルト値:0.7

2 外壁対策

1)断熱

外壁について、対策を行わない方位の数値は変更しないこと。

対策を行う方位のみ、その数値に変更する。

表-5 暑さ対策による外壁の熱貫流率入力表

方位		流率
北	1.18	$W/(m^2K)$
北東	1.18	$W/(m^2K)$
東	1.18	$W/(m^2K)$
南東	<u>1</u> .1 <u>8</u>	$W/(m^2K)$
南	0.80	W/(m ² K)
南西	T.18	$W/(m^2K)$
西	0.80	$W/(m^2K)$
北西	 1.18	$W/(m^2K)$
	北東東南南西西	北東 1.18 北東 1.18 東 1.18 南東 0.80 南西 0.80

★デフォルト値:1.18W/(m²K)

断熱施工により、改善される外壁の熱貫流率を 入力する。

既存の外壁の構造・材料が不明な場合は、変 更をしないで、そのまま使用する。

②遮熱塗装

外壁について、対策を行わない方位の数値は変更しないこと。

対策を行う方位のみ、その数値に変更する。

表一6 暑さ対策による外壁の熱貫流率入力表

部位	万位	日射熱吸収率
	北	0.7
外壁	北東	0.7
	東	0.7
	南東	0.7
	南	0.7
	南西	0.7
	西	0.7
	北西	0.7

★デフォルト値:0.7

3 窓対策

窓対策による熱貫流率と日射熱取得率の値

表-7 暑さ対策による窓の熱貫流率と日射熱取得率の選定表

デフォルト値	$5.95 \text{ W/(m}^2\text{K})$	0.876
単層高性能熱線反射相当	$5.61 \text{ W/(m}^2\text{K})$	0.490
複層(空気層6mm)Low-E(遮蔽)6t+透明6t相当	$2.50 \text{ W/(m}^2\text{K})$	0.415
複層(空気層12mm)Low-E(遮蔽)6t+透明6t相当	$1.69 \text{ W/(m}^2\text{K})$	0.408
上記以外(JISで示された熱貫流率)	$W/(m^2K)$	

窓ガラスについて、対策を行わない方位の数値はデフォルト値のままとすること。 対策を行う方位のみ、プルダウンリストから選択する。 表 一8 暑さ対策による窓の熱貫流率と日射熱取得率の入力表

	部位	方位	窓対策の内容	熱貫流率	日射熱取得率
	北 夏 窓ガラス 南 南 南	北	デフォルト値	5.95	0.876
		北東	デフォルト値	5.95	0.876
		東	デフォルト値	5.95	0.876
		南東	デフォルト値	5.95	0.876
		南	デフォルト値	5.95	0.876
		南西	デフォルト値	5.95	0.876
		西	デフォルト値	5.95	0.876
		北西	デフォルト値	5.95	0.876

★デフォルト値: 熱貫流率 日射熱取得率 $5.95W/(m^2K)$ 0.876